direct product, metabelian, supersoluble, monomial, 2-hyperelementary
Aliases: C2×C23.7D6, C24⋊6Dic3, C24.28D6, (C6×D4)⋊13C4, (C23×C6)⋊4C4, C6⋊2(C23⋊C4), (C22×C12)⋊6C4, (C2×D4)⋊5Dic3, (C2×D4).200D6, (C22×D4).6S3, C23⋊2(C2×Dic3), (C22×C4)⋊5Dic3, (C22×C6).108D4, (C6×D4).280C22, C23.71(C3⋊D4), C23.86(C22×S3), (C23×C6).45C22, C6.D4⋊43C22, (C22×C6).115C23, C22.6(C22×Dic3), C22.1(C6.D4), C3⋊3(C2×C23⋊C4), (C2×C12)⋊2(C2×C4), (D4×C2×C6).10C2, (C22×C6)⋊3(C2×C4), (C2×C4)⋊1(C2×Dic3), (C2×C6).38(C2×D4), C6.74(C2×C22⋊C4), (C2×C6.D4)⋊8C2, C22.10(C2×C3⋊D4), (C2×C6).195(C22×C4), C2.10(C2×C6.D4), (C2×C6).113(C22⋊C4), SmallGroup(192,778)
Series: Derived ►Chief ►Lower central ►Upper central
Generators and relations for C2×C23.7D6
G = < a,b,c,d,e,f | a2=b2=c2=d2=e6=1, f2=cb=bc, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ebe-1=fbf-1=bd=db, fcf-1=cd=dc, ce=ec, de=ed, df=fd, fef-1=cde-1 >
Subgroups: 552 in 210 conjugacy classes, 71 normal (25 characteristic)
C1, C2, C2, C2, C3, C4, C22, C22, C22, C6, C6, C6, C2×C4, C2×C4, D4, C23, C23, C23, Dic3, C12, C2×C6, C2×C6, C2×C6, C22⋊C4, C22×C4, C22×C4, C2×D4, C2×D4, C24, C2×Dic3, C2×C12, C2×C12, C3×D4, C22×C6, C22×C6, C22×C6, C23⋊C4, C2×C22⋊C4, C22×D4, C6.D4, C6.D4, C22×Dic3, C22×C12, C6×D4, C6×D4, C23×C6, C2×C23⋊C4, C23.7D6, C2×C6.D4, D4×C2×C6, C2×C23.7D6
Quotients: C1, C2, C4, C22, S3, C2×C4, D4, C23, Dic3, D6, C22⋊C4, C22×C4, C2×D4, C2×Dic3, C3⋊D4, C22×S3, C23⋊C4, C2×C22⋊C4, C6.D4, C22×Dic3, C2×C3⋊D4, C2×C23⋊C4, C23.7D6, C2×C6.D4, C2×C23.7D6
(1 23)(2 24)(3 19)(4 20)(5 21)(6 22)(7 38)(8 39)(9 40)(10 41)(11 42)(12 37)(13 26)(14 27)(15 28)(16 29)(17 30)(18 25)(31 46)(32 47)(33 48)(34 43)(35 44)(36 45)
(1 14)(2 39)(3 16)(4 41)(5 18)(6 37)(7 32)(8 24)(9 34)(10 20)(11 36)(12 22)(13 46)(15 48)(17 44)(19 29)(21 25)(23 27)(26 31)(28 33)(30 35)(38 47)(40 43)(42 45)
(1 14)(2 15)(3 16)(4 17)(5 18)(6 13)(7 32)(8 33)(9 34)(10 35)(11 36)(12 31)(19 29)(20 30)(21 25)(22 26)(23 27)(24 28)(37 46)(38 47)(39 48)(40 43)(41 44)(42 45)
(1 47)(2 48)(3 43)(4 44)(5 45)(6 46)(7 27)(8 28)(9 29)(10 30)(11 25)(12 26)(13 37)(14 38)(15 39)(16 40)(17 41)(18 42)(19 34)(20 35)(21 36)(22 31)(23 32)(24 33)
(1 2 3 4 5 6)(7 8 9 10 11 12)(13 14 15 16 17 18)(19 20 21 22 23 24)(25 26 27 28 29 30)(31 32 33 34 35 36)(37 38 39 40 41 42)(43 44 45 46 47 48)
(1 19)(2 28 48 8)(3 23)(4 26 44 12)(5 21)(6 30 46 10)(7 16)(9 14)(11 18)(13 35 37 20)(15 33 39 24)(17 31 41 22)(25 42)(27 40)(29 38)(32 43)(34 47)(36 45)
G:=sub<Sym(48)| (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,38)(8,39)(9,40)(10,41)(11,42)(12,37)(13,26)(14,27)(15,28)(16,29)(17,30)(18,25)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,14)(2,39)(3,16)(4,41)(5,18)(6,37)(7,32)(8,24)(9,34)(10,20)(11,36)(12,22)(13,46)(15,48)(17,44)(19,29)(21,25)(23,27)(26,31)(28,33)(30,35)(38,47)(40,43)(42,45), (1,14)(2,15)(3,16)(4,17)(5,18)(6,13)(7,32)(8,33)(9,34)(10,35)(11,36)(12,31)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,47)(2,48)(3,43)(4,44)(5,45)(6,46)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19)(2,28,48,8)(3,23)(4,26,44,12)(5,21)(6,30,46,10)(7,16)(9,14)(11,18)(13,35,37,20)(15,33,39,24)(17,31,41,22)(25,42)(27,40)(29,38)(32,43)(34,47)(36,45)>;
G:=Group( (1,23)(2,24)(3,19)(4,20)(5,21)(6,22)(7,38)(8,39)(9,40)(10,41)(11,42)(12,37)(13,26)(14,27)(15,28)(16,29)(17,30)(18,25)(31,46)(32,47)(33,48)(34,43)(35,44)(36,45), (1,14)(2,39)(3,16)(4,41)(5,18)(6,37)(7,32)(8,24)(9,34)(10,20)(11,36)(12,22)(13,46)(15,48)(17,44)(19,29)(21,25)(23,27)(26,31)(28,33)(30,35)(38,47)(40,43)(42,45), (1,14)(2,15)(3,16)(4,17)(5,18)(6,13)(7,32)(8,33)(9,34)(10,35)(11,36)(12,31)(19,29)(20,30)(21,25)(22,26)(23,27)(24,28)(37,46)(38,47)(39,48)(40,43)(41,44)(42,45), (1,47)(2,48)(3,43)(4,44)(5,45)(6,46)(7,27)(8,28)(9,29)(10,30)(11,25)(12,26)(13,37)(14,38)(15,39)(16,40)(17,41)(18,42)(19,34)(20,35)(21,36)(22,31)(23,32)(24,33), (1,2,3,4,5,6)(7,8,9,10,11,12)(13,14,15,16,17,18)(19,20,21,22,23,24)(25,26,27,28,29,30)(31,32,33,34,35,36)(37,38,39,40,41,42)(43,44,45,46,47,48), (1,19)(2,28,48,8)(3,23)(4,26,44,12)(5,21)(6,30,46,10)(7,16)(9,14)(11,18)(13,35,37,20)(15,33,39,24)(17,31,41,22)(25,42)(27,40)(29,38)(32,43)(34,47)(36,45) );
G=PermutationGroup([[(1,23),(2,24),(3,19),(4,20),(5,21),(6,22),(7,38),(8,39),(9,40),(10,41),(11,42),(12,37),(13,26),(14,27),(15,28),(16,29),(17,30),(18,25),(31,46),(32,47),(33,48),(34,43),(35,44),(36,45)], [(1,14),(2,39),(3,16),(4,41),(5,18),(6,37),(7,32),(8,24),(9,34),(10,20),(11,36),(12,22),(13,46),(15,48),(17,44),(19,29),(21,25),(23,27),(26,31),(28,33),(30,35),(38,47),(40,43),(42,45)], [(1,14),(2,15),(3,16),(4,17),(5,18),(6,13),(7,32),(8,33),(9,34),(10,35),(11,36),(12,31),(19,29),(20,30),(21,25),(22,26),(23,27),(24,28),(37,46),(38,47),(39,48),(40,43),(41,44),(42,45)], [(1,47),(2,48),(3,43),(4,44),(5,45),(6,46),(7,27),(8,28),(9,29),(10,30),(11,25),(12,26),(13,37),(14,38),(15,39),(16,40),(17,41),(18,42),(19,34),(20,35),(21,36),(22,31),(23,32),(24,33)], [(1,2,3,4,5,6),(7,8,9,10,11,12),(13,14,15,16,17,18),(19,20,21,22,23,24),(25,26,27,28,29,30),(31,32,33,34,35,36),(37,38,39,40,41,42),(43,44,45,46,47,48)], [(1,19),(2,28,48,8),(3,23),(4,26,44,12),(5,21),(6,30,46,10),(7,16),(9,14),(11,18),(13,35,37,20),(15,33,39,24),(17,31,41,22),(25,42),(27,40),(29,38),(32,43),(34,47),(36,45)]])
42 conjugacy classes
class | 1 | 2A | 2B | 2C | 2D | ··· | 2I | 2J | 2K | 3 | 4A | 4B | 4C | ··· | 4J | 6A | ··· | 6G | 6H | ··· | 6O | 12A | 12B | 12C | 12D |
order | 1 | 2 | 2 | 2 | 2 | ··· | 2 | 2 | 2 | 3 | 4 | 4 | 4 | ··· | 4 | 6 | ··· | 6 | 6 | ··· | 6 | 12 | 12 | 12 | 12 |
size | 1 | 1 | 1 | 1 | 2 | ··· | 2 | 4 | 4 | 2 | 4 | 4 | 12 | ··· | 12 | 2 | ··· | 2 | 4 | ··· | 4 | 4 | 4 | 4 | 4 |
42 irreducible representations
dim | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 4 | 4 |
type | + | + | + | + | + | + | - | - | + | - | + | + | |||||
image | C1 | C2 | C2 | C2 | C4 | C4 | C4 | S3 | D4 | Dic3 | Dic3 | D6 | Dic3 | D6 | C3⋊D4 | C23⋊C4 | C23.7D6 |
kernel | C2×C23.7D6 | C23.7D6 | C2×C6.D4 | D4×C2×C6 | C22×C12 | C6×D4 | C23×C6 | C22×D4 | C22×C6 | C22×C4 | C2×D4 | C2×D4 | C24 | C24 | C23 | C6 | C2 |
# reps | 1 | 4 | 2 | 1 | 2 | 4 | 2 | 1 | 4 | 1 | 2 | 2 | 1 | 1 | 8 | 2 | 4 |
Matrix representation of C2×C23.7D6 ►in GL8(𝔽13)
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 6 | 10 |
0 | 0 | 0 | 0 | 0 | 0 | 3 | 7 |
12 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 12 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 12 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 12 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 7 | 3 | 0 | 0 |
0 | 0 | 0 | 0 | 10 | 6 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 10 | 6 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 1 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 1 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 1 | 0 | 0 | 0 | 0 | 0 | 0 |
1 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 11 | 11 | 0 | 0 | 0 | 0 |
0 | 0 | 2 | 9 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 12 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 0 | 12 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 12 | 0 | 0 |
8 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 5 | 0 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 0 | 0 | 0 | 0 | 0 |
0 | 0 | 8 | 5 | 0 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 12 | 0 | 0 | 0 |
0 | 0 | 0 | 0 | 9 | 1 | 0 | 0 |
0 | 0 | 0 | 0 | 0 | 0 | 7 | 3 |
0 | 0 | 0 | 0 | 0 | 0 | 5 | 6 |
G:=sub<GL(8,GF(13))| [12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,0,0,0,0,6,3,0,0,0,0,0,0,10,7],[12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6,0,0,0,0,0,0,0,0,7,10,0,0,0,0,0,0,3,6],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12],[0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,11,2,0,0,0,0,0,0,11,9,0,0,0,0,0,0,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0,0,0,12,0,0,0,0,0,0,0,0,12,0,0],[8,0,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,8,8,0,0,0,0,0,0,0,5,0,0,0,0,0,0,0,0,12,9,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,7,5,0,0,0,0,0,0,3,6] >;
C2×C23.7D6 in GAP, Magma, Sage, TeX
C_2\times C_2^3._7D_6
% in TeX
G:=Group("C2xC2^3.7D6");
// GroupNames label
G:=SmallGroup(192,778);
// by ID
G=gap.SmallGroup(192,778);
# by ID
G:=PCGroup([7,-2,-2,-2,-2,-2,-2,-3,56,422,297,1684,6278]);
// Polycyclic
G:=Group<a,b,c,d,e,f|a^2=b^2=c^2=d^2=e^6=1,f^2=c*b=b*c,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,e*b*e^-1=f*b*f^-1=b*d=d*b,f*c*f^-1=c*d=d*c,c*e=e*c,d*e=e*d,d*f=f*d,f*e*f^-1=c*d*e^-1>;
// generators/relations